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 Accurate Epidemiological Forecasting:
• provides opportunities for driving administrative decision-making and，
• timely allocating healthcare resources.
• helps with drug research (i.e., vaccines) which leads to reduce financial burdens and deaths.

Epidemics spread through human-to-human interaction and circulate worldwide, seriously endangering public health.

• Seasonal influenza: The World Health Organization (WHO) estimates that seasonal influenza annually causes approximately 3-5 
million severe cases and 290,000-650,000 deaths [1].

• Other epidemics: In recent years, the COVID-19 has spread to more than 200 countries and territories around the world [2].
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Main characteristics of this task

• The inherent difficulty of long-term forecasting

• Nonlinear temporal dependencies (e.g., seasonal influenza in Fig.1)

• dynamic inter-dependencies between regions (e.g., human mobility in Fig.2)

Figure 2. The overall of human mobility flow between 
different states within Covid-19 period in US (2020).Figure 1. The overall of the flu statistic of US HHS regions.
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Exsiting Methods
• Statistic Methods: AR, ARIMA, SARIMA.
• Compartment Methods: SIR, SEIR, SEUIR.
• Deep Learning-based Methods: CNNRNN-Res, Cola-GNN, MPNN, SMART, etc.
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Background & Motivations

2. Spatial Transmission Risk: implies a potential ability that the epidemic in one region impacts other 
regions from a spatial perspective.

• Local Transmission Risk: geographically adjacent 
• Global Tansmission Risk: complex social connections

the epidemic in one region has not only local effects but also spillover 
effects across regions through complicated social connections [3]

1. Spatio-Temporal Graph Construction
• Explicit graph structures (e.g., geographic topology): 

• does not necessarily reflect the true dependencies.
• hard to capture hidden correlations.

• Using external data (e.g., human mobility):
• data availability, data accuracy, and data privacy

• Graph learning methods (e.g., self-attention): 
• oversmoothing
• noise propagation

 Capturing underlying transmission 
dependencies between regions 
reasonably and accurately.

 the method should flexibly support 
both scenarios when rich external 
information can be collected or not.



• N regions. We have a total of N regions (i.e., states or cities). Each region is associated with a time 
series for a window T.

• Input. Epidemic statistic with a look-back window T at time point t.

 
• Goal. The goal of this task is to predict the epidemic statistic of the future time point t + h.

Problem Formulation (Fig.1)

Figure 1. The illustration of problem formulation.



Methodology
Overall

• We design a novel graph neural network-based model for epidemic prediction in which a transmission risk encoding module 
is proposed that shows how we incorporate local and global spatial effects of regions into the model.

• We introduce a Region-Aware Graph Learner which takes transmission risk, geographical information, and temporal 
dependencies into account to better explore underlying spatio-temporal correlations between regions.



Methodology
Encoder: Multi-Scale Convolutions

Previous works [4,5] suggest that using a set of multi-scale convolutions can capture complex temporal patterns simultaneously. 
Therefore, in this work, we also adopt multi-scale convolutions with different filter sizes and dilated factors as a feature extractor.



Methodology
Transmission Risk Encoding Module

Local Transmission Risk (LTR) Encoding
• The proximity between regions will lead to a rapid increase in the mobility of 

internal elements between regions (e.g., human mobility), which will exacerbate 
local transmission risk. 

Global Transmission Risk (GTR) Encoding 
• Due to the complicated social connections, 

there are also potential correlations between 
disjoint regions.
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Methodology
Region-Aware Graph Learner

We design a Region-Aware Graph Learner (RAGL), which considers 
both temporal and spatial information to generate a region correlation 
graph, where nodes correspond to regions, and edge weights correspond 
to the correlations between regions.

Temporal Correlation

Spatial Correlation

External resources

Fig. The input and output of RAGL

As a gate 



Methodology
Graph Convolution Network and Final Prediction 

• Linear Part.  Some works have incorporated a linear part to deal with the sensitivity to input and purely nonlinear modeling [7,8].
• Nonlinear Part. Neural networks are dedicated to handling the nonlinear characteristics of raw time series.
The final prediction of EpiGNN is obtained by summing the nonlinear part and the linear part got by an AutoRegressive component.

In this work, we apply GCN [6] to investigate the epidemic propagation among different regions. We apply the 
following yellow box to update node representations.

GCN

Final prediction



• RMSE

• PCC

Experimental Settings

 Datasets

    We prepare five real-world epidemic-related datasets 
as follows, and their data statistics are shown in Table 1.

• Influenza statistics datasets:
• Japan-Prefectures
• US-Regions
• US-States

• COVID-19 statistics datasets:
• Australia-COVID
• Spain-COVID

 Baselines

    We compared the proposed model with the 
following methods.
• Statistic models: HA, AR.
• Deep Learning-based models:

• LSTM [9]
• TPA-LSTM [ECMLPKDD2019] [8]
• ST-GCN [IJCAI18] [10]
• CNNRNN-Res [SIGIR2018] [11]
• SAIFlu-Net [JBHI2021] [12]
• Cola-GNN [CIKM2020] [4]

 Metrics

For RMSE lower value is better, while for PCC higher value is better

from JHU-CSSE

from Cola-GNN



Experimental Results

We evaluate our model in short-term (horizon < 10) 
and long term (horizon >=10) settings.

Our method (EpiGNN) achieves the most stable and 
optimal performance on all datasets.



Experimental Results

- ablation study

• w/oLTR stands for EpiGNN without local 
transmission risk encoding.

• w/oGTR represents EpiGNN without global 
transmission risk encoding.

• w/oRAGL indicates EpiGNN using self-
attention [13] to capture dependencies between 
regions instead of Region-Aware Graph Learner 
(i.e., applying                                              ).

We quantitatively show that the complete EpiGNN 
can yield the most stable and optimal performance 
compared to other incomplete models.



Experimental Results

The predicted curve of EpiGNN and LSTM in Fig. 6:
We observe that EpiGNN fits the ground truth better, and some trends 
of fluctuation are also predicted better (e.g., WY/DE/VT), while LSTM 
yields quite inaccurate predictions in some states.

We visualize an example with window=(2016/46th-2017/13th) and 
horizon=5 (week) in US-States dataset.
• Texas does not have dependencies with all states. Nevertheless, 

Texas has relatively significant dependencies with its adjacent 
regions and also has relationships with some non-adjacent regions.

TX's adjacent states



Conclusions

• In this paper, we develop EpiGNN, a novel model for epidemic prediction. 
In this model, we design a transmission risk encoding module to characterize 
local and global spatial effects of each region.

• Meanwhile, we propose a Region-Aware Graph Learner that takes 
transmission risk, geographical dependencies, and temporal information into 
account to better explore spatial-temporal dependencies.

• Experimental results show the effectiveness and efficiency of our method on 
five epidemic-related datasets.

• As for future work, we will devote to better predict by considering the time 
decay effects of spatial transmission.
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For more information, please refer to our paper and source codes:

Thanks for your attention!
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