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Background & Motivations
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Epidemics spread through human-to-human interaction and circulate worldwide, seriously endangering public health.

* Seasonal influenza: The World Health Organization (WHO) estimates that seasonal influenza annually causes approximately 3-5
million severe cases and 290,000-650,000 deaths [1].
* Other epidemics: In recent years, the COVID-19 has spread to more than 200 countries and territories around the world [2].

v Accurate Epidemiological Forecasting:

* provides opportunities for driving administrative decision-making and, i
* timely allocating healthcare resources. Q
* helps with drug research (i.e., vaccines) which leads to reduce financial burdens and deaths. #
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Background & Motivations

2020/5/05 - 2020/6/01
Main characteristics of this task
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* The inherent difficulty of long-term forecasting

* Nonlinear temporal dependencies (e.g., seasonal influenza in Fig.1) 100000
* dynamic inter-dependencies between regions (e.g., human mobility in Fig.2) 0000
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Figure 2. The overall of human mobility flow between
Figure 1. The overall of the flu statistic of US HHS regions. different states within Covid-19 period in US (2020).
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Background & Motivations

Exsiting Methods
« Statistic Methods: AR, ARIMA, SARIMA.

* Compartment Methods: SIR, SEIR, SEUIR.

* Deep Learning-based Methods: CNNRNN-Res, Cola-GNN, MPNN, SMART, etc.
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Background & Motivations

1. Spatio-Temporal Graph Construction
* Explicit graph structures (e.g., geographic topology):
* does not necessarily reflect the true dependencies.
* hard to capture hidden correlations.
» Using external data (e.g., human mobility):
» data availability, data accuracy, and data privacy
* Graph learning methods (e.g., self-attention):
* oversmoothing
* noise propagation

» Capturing underlying transmission
dependencies between regions
reasonably and accurately.

» the method should flexibly support
both scenarios when rich external
information can be collected or not.

2. Spatial Transmission Risk: implies a potential ability that the epidemic in one region impacts other
regions from a spatial perspective.

the epidemic in one region has not only local effects but also spillover
effects across regions through complicated social connections [3]

g

* Local Transmission Risk: geographically adjacent
* Global Tansmission Risk: complex social connections

(a) Geographic topology. (b) Local transmission effects. (c) Global transmission effects.

Fig. 1. The illustration of geographic topology, local and global spatial transmission
effects, where nodes represent regions and edges represent the relationships.
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Problem Formulation (Fig.1)

* N regions. We have a total of N regions (i.e., states or cities). Each region is associated with a time
series for a window 7.

Xi: = |[Tip—Ty1, o Tist] € R

* Input. Epidemic statistic with a look-back window T at time point ¢.

X = [Xt—T—i—la ...,Xt] e RVXT

* Goal. The goal of this task is to predict the epidemic statistic of the future time point ¢ + 4.
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Figure 1. The illustration of problem formulation.
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Methodology
Overall

*  We design a novel graph neural network-based model for epidemic prediction in which a transmission risk encoding module
is proposed that shows how we incorporate local and global spatial effects of regions into the model.

 We introduce a Region-Aware Graph Learner which takes transmission risk, geographical information, and temporal
dependencies into account to better explore underlying spatio-temporal correlations between regions.
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Methodology
Encoder: Multi-Scale Convolutions

Previous works [4,5] suggest that using a set of multi-scale convolutions can capture complex temporal patterns simultaneously.
Therefore, in this work, we also adopt multi-scale convolutions with different filter sizes and dilated factors as a feature extractor.
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Methodology
Transmission Risk Encoding Module

Local Transmission Risk (LTR) Encoding

* The proximity between regions will lead to a rapid increase in the mobility of
internal elements between regions (e.g., human mobility), which will exacerbate
local transmission risk.

local area”

| the degree of Iegiont | (a) Geographic topology. (b) Local transmission effects. (c) Global transmission effects.
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Methodology
Region-Aware Graph Learner

We design a Region-Aware Graph Learner (RAGL), which considers
both temporal and spatial information to generate a region correlation
graph, where nodes correspond to regions, and edge weights correspond

to the correlations between regions.
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Methodology
Graph Convolution Network and Final Prediction

In this work, we apply GCN [6] to investigate the epidemic propagation among different regions. We apply the
following yellow box to update node representations.

* Linear Part. Some works have incorporated a linear part to deal with the sensitivity to input and purely nonlinear modeling [7,8].
* Nonlinear Part. Neural networks are dedicated to handling the nonlinear characteristics of raw time series.
The final prediction of EpiGNN is obtained by summing the nonlinear part and the linear part got by an AutoRegressive component.
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Experimental Settings
> Baselines

> Datasets :
We compared the proposed model with the
We prepare five real-world epidemic-related datasets followin.g methods.
as follows, and their data statistics are shown in Table 1. * Statistic models: HA, AR.
* Deep Learning-based models:
* Influenza statistics datasets: © LSTM D]

+ TPA-LSTM [ECMLPKDD2019] [8]
. ST-GCN [IJCAI18][10]

« CNNRNN-Res [SIGIR2018] [11]

»  SAIFIu-Net [JBHI2021] [12]

+  Cola-GNN [CIKM2020] [4]

e Japan-Prefectures
* US-Regions } from Cola-GNN
« US-States

« COVID-19 statistics datasets:
 Australia-COVID

+ Spain-COVID } from JHU-CSSE

> Metrics

Table 1. Statistics of datasets, where SD is standard deviation and granularity means
the frequency of epidemic surveillance records.

e RMSE RMSE= J %;(y — yi)?

Datasets Regions Length Min Max Mean SD Granularity

Japan-Prefectures 47 348 0 26635 655 1711 weekly ZN (s — 5)@ —7)

US-Regions 10 785 0 16526 1009 1351  weekly PCC = L -

US-States 49 360 0 9716 223 428  weekly * PCC VEN G- 922N - )2
Australia-COVID 8 906 0 9987 539 1532 daily

Spain-COVID 35 122 0 4623 38 269  daily For RMSE lower value is better, while for PCC higher value is better
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Experimental Results

Table 2. RMSE and PCC performance of different methods on three datasets with
horizon = 3, 5, 10, 15. Bold face indicates the best result of each column and underlined

We evaluate our model in short-term (hOI’lZOl’l < 10) the second-best. * represents that the result is reported in the corresponding reference.

and long term (horizon >=10) settings.

Dataset Japan-Prefectures US-Regions US-States
. . Horizon Horizon Horizon
Our method (EpiGNN) achieves the most stable and ~ Methods ~ Metid 3 5 10 15 | 3 5 10 15 | 3 5 10 15
Optlmal perfonnance on all datasetS. HA RMSE| 2129 2180 2230 2242 (2552 2653 2891 2992 | 360 371 392 403
PCC |0.607 0.475 0.493 0.534|0.845 0.727 0.514 0.415|0.893 0.848 0.772 0.742
AR RMSE| 1705 2013 2107 2042 | 757 997 1330 1404 | 204 251 306 327
Table 3. RMSE| performance of different methods on two COVID-19 datasets with PCC |0.579 0.310 0.238 0.483|0.878 0.792 0.612 0.52710.909 0.863 0.773 0.723
horizon = 3, 7, 14. Bold face indicates the best result of each column and underlined
the second-best. - means the forecasting results are not available. LSTM RMSE| 1246 1335 1622 1649 | 688 975 1351 14v7| 180 213 276 307
PCC |0.873 0.853 0.681 0.695|0.895 0.812 0.586 0.488|0.922 0.889 0.820 0.771
Dataset Spain-COVID Australia-COVID TPA-LSTM RMSE| 1142 1192 1677 1579 | 761 950 1388 1321 | 203 247 236 247
Horizon Horizon PCC |0.879 0.868 0.644 0.724|0.847 0.814 0.675 0.627|0.892 0.833 0.849 0.844
Niethods 8 v 14 : { 14 ST-GCN RMSE| 1115 1129 1541 1527 | 807 1038 1290 1286 | 209 256 289 292
HA 16720 18000 21419 | 2048 48 9277737 2580 51
PCC |0.880 0.872 0.735 0.773|0.840 0.741 0.644 0.619|0.778 0.823 0.769 0.774
[ :Af{m“ }?ESZ }Zgii ?8%}? 1% 3?ZZ§ % ] CNNRNN-Res RMSE| 1550 1942 1865 1862 | 738 936 1233 1285 | 239 267 260 250
= IR — e R A PCC |0.673 0.380 0.438 0.467[0.862 0.782 0.552 0.485|0.860 0.822 0.820 0.847
TPA-LSTM 0T HSAR  aars | M BN AR SAIFlu-Net RMSE| 1356 1430 1654 1707 | 661 870 1157 1215 | 167 195 236 238
ST-GCN 162.81  186.21  190.13 | 253.97  443.01  485.12 e - = i%
ONNRNN-TRes | 16375 208.85  219.65 210.93 116.90 485.01 i PCC |0.765 0.654 0.585 0.556|0.885 0.800 0.674 0.564|0.930 0.900 0.853 0.852
SAIFIu-Net 158.06  200.63  229.62 | 133.85 277.90 35114 ColaGNN™ RMSE| 1061 117 1372 1475 656 445 1154 1805 16T 202 24l 267 i?
Cola-GNN 13834 176.52  203.67 127.59 279 56 326.79 PCC |0.901 0.890 0.813 0.753|0.909 0.835 0.717 0.639|0.933 0.897 0.822 0.856
EpiGNN 135.54 162.51 186.41 71.42 153.07 287.90 EpiGNN RMSE| 996 1031 1441 1470| 589 774 984 1061| 160 186 220 236
EpiCGNNeszer 129.90 145.33 178.73 - - - PCC (0.904 0.908 0.739 0.773(0.912 0.842 0.749 0.694/0.935 0.907 0.865 0.861
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Experimental Results

- ablation study

w/oLTR stands for EpiGNN without local

transmission risk encoding.

* w/0GTR represents EpiGNN without global
transmission risk encoding.

* w/0RAGL indicates EpiGNN using self-

attention [13] to capture dependencies between

regions instead of Region-Aware Graph Learner

(i.e., applying A = softmax((Hf "W, )(Hf**W,)T) ).

We quantitatively show that the complete EpiGNN
can yield the most stable and optimal performance
compared to other incomplete models.

240 US-States 1.000 US-States
/oL TR 0.975 N w/oLTR
2201 B w/oGTR . B w/oGTR
I w/oRAGL 0.950 [ w/oRAGL
. 2001 E=3 EpiGNN 0.925 =3 EpiGNN
g 180 & 0.900
160 DATS
0.850
140 0.825
120 — 0.800
5 3 10
Horizon Horizon
Japan-Prefectures 10 Japan-Prefectures
1600{ HEE w/ooLTR B w/oLTR

B w/oGTR 0.9 I w/oGTR
14001 EE w/ioRAGL [ w/iOoRAGL
=1 EpiGNN 0.8 =0 EpiGNN

w 1200
2 Qo7

0.6

=
= 1000

800
0.5
600

h]

L 2
Horizon Horizon

Fig. 3. Results of ablation studies on US-States (top) and Japan-Prefectures (bottom)
datasets. For RMSE lower value is better, while for PCC higher value is better.
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Experimental Results

We visualize an example with window=(2016/46th-2017/13th) and
horizon=5 (week) in US-States dataset.

* Texas does not have dependencies with all states. Nevertheless,

TCXaS haS I'elathely Slgnlflcant depenanCICS Wlth ltS adJ aC CIlt (a) The distribution of degrees. (b) The distribution of global . (c) The distribution of correlations
R . . . . . correlation coefficients. between Texas and other states.
regions and also has relationships with some non-adjacent regions.

Fig. 5. Visualization of intermediate results.
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The predicted curve of EpiGNN and LSTM in Fig.6: .
We observe that EpiGNN fits the ground truth better, and some trends .
of fluctuation are also predicted better (e.g., WY/DE/VT), while LSTM B
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yields quite inaccurate predictions in some states. v
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Fig. 6. Predicted curve of EpiGNN (green) and LSTM (blue) for selected states.
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Conclusions

EpiGNN: Exploring Spatial Transmission
with Graph Neural Network for Regional

* In this paper, we develop EpiGNN, a novel model for epidemic prediction. Figifenily Forcoasting
In this model, we design a transmission risk encoding module to characterize e i e R

College of Computer, National University of Defense Technology

local and global spatial effects of each region. st o e i st o e

Abstract. Epidemic forecasting is the key to effective control of epi-

demic transmission and helps the world mitigate the crisis that threat-

. . ens public health. To better understand the transmission and evolution

of epidemics, we propose EpiGNN, a graph neural network-based model

* Meanwhile, we propose a Region-Aware Graph Learner that takes D B B e
coding module to characterize local and global spatial effects of regions

. . . . . . . . in epidemic processes and incorporate them into the model. Meanwhile,
transmission risk, geographical dependencies, and temporal information into o dovo . gion e Craph Lencos (RAGL) ta e e

sion risk, geographical dependencies, and temporal information into ac-

. . count to better explore spatial-temporal dependencies and makes regions
acec Ount to b etter explore Sp atl al_temporal dep endenc 1es awsve of related regions® epidemic sistions: The RAGD can also come
. bine with external resources, such as human mobility, to further improve
prediction performance. Comprehensive experiments on five real-world
epidemic-related datasets (including infl and COVID-19) demon-
strate the effectiveness of our proposed method and show that EpiGNN

outperforms state-of-the-art baselines by 9.48% in RMSE.

« Experimental results show the effectiveness and efficiency of our method on Kerwords. Epdnic cing _ Grah Nl Ntk St
five epidemic-related datasets.

1 Introduction

Epidemics spread through human-to-human interaction and circulate worldwide,
seriously endangering public health. The World Health Organization (WHO)
. . . . . estimates that seasonal influenza annually causes approximately 3-5 million se-
* As for future work, we will devote to better predict by considering the time e cascsand 200000-63,00 deatsf] Recey, thecoronvis diose 2019
(COVID-19) has spread over more than 200 countries and terrltonesﬂ causing
. . . heavy human losses and economic burdens. Accurate prediction of epidemics is
dec ay effects Of Spatlal transml S S lon . the key to effective control of epidemic transmission and plays an essential role in
driving administrative decision-making, timely allocating healthcare resources,
and helping with drug research.

4 Corresponding author.
! https://www.who.int/en/news-room/fact-sheets/detail/influenza- (seasonal)
2 https://covid19.who.int/
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Thanks for your attention!

For more information, please refer to our paper and source codes:

paper: https://2022.ecmlpkdd.org/wp-content/uploads/2022/09/sub_829.pdf
source codes: https://github.com/Xiefeng69/EpiGNN
homepage: https://xiefeng69.github.io/
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